Questions that a GIS Can Answer

What types of questions can a GIS answer?

- Spatial questions
- Non-spatial questions

Spatial questions

- " How many people work with GIS in the major centers of Riyadh" OR " Which centers lie within 10 Km. of each other? "
- " What is the shortest route passing through all these centers".
- These are spatial questions that can only be answered using positional data and other information such as the radius of earth.
- GIS can answer such questions

Non-spatial questions

- "What is the average number of people working with GIS in each location?"
- is a non-spatial question the answer to which does not require the stored value of latitude and longitude; nor does it describe where the places are in relation with each other.
- GIS can be used to answer such questions, but you could also use other technologies such as databases or spreadsheets.

Questions that a GIS Can Answer

Questions that a GIS Can Answer

- ▶ 1) location (what is at...?);
- 2) condition (where is it...?);
- 3) trend (what has changed...?);
- 4) routing (which is the best way...?);
- 5) pattern (what is the best way...?);
- ▶ 6) modelling (what if...?).

Questions a GIS can answer

Perhaps the simplest way to define a GIS is by listing the types of questions it can answer. For any application there are six generic questions that a sophisticated GIS can answer.

Location – What is at...?

- Also known as a 'where is what?' query the first of these questions seeks to find out what exists at a particular location.
- A location can be described in many ways, using, for example place name, post code, or geographic reference such as longitude/latitude or x/y

Location: What is at...?



- A GIS can be used to display the features that exist at a certain location or that are associated with a certain location.
- For example, a GIS can be used to map public infrastructure, such as roads, utility lines, and schools.
- It can also be used to display characteristics that are associated with a particular place, for example, the population or median household income of counties.

1990 Population per Square Mile

SE 466

Dr. Bashar Kamal Bash

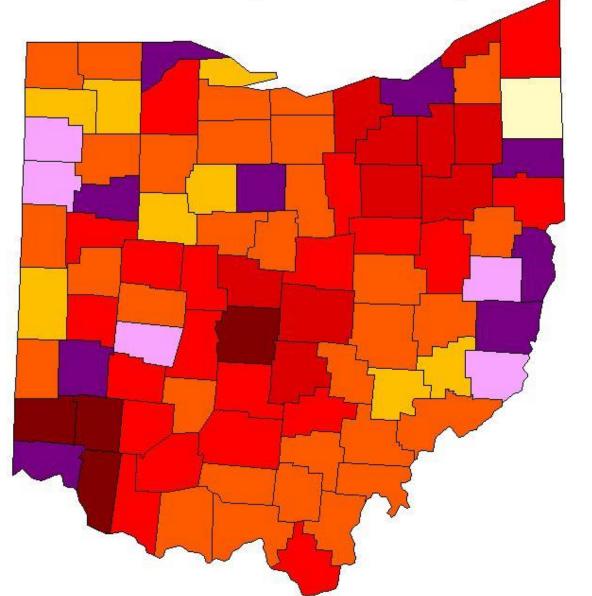
Condition – Where is it...?

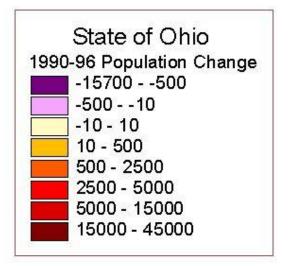
- The second question is the converse of the first and requires spatial data to answer.
- Instead of identifying what exists at a given location, a location is found where certain conditions are satisfied (e.g., a section of land of at least 2000 square meters in size, within 100 meters of a road, and with soils suitable for supporting buildings).

Trends – What has changed since...?

The third question might involve both the first two and seeks to find the differences e.g. in land use or elevation, over time.

What has changed...?




- By comparing data from two or more time periods, a GIS can be used to identify trends over time.
- For example, by looking at population change between two points in time, high growth areas within a region can be visually identified.

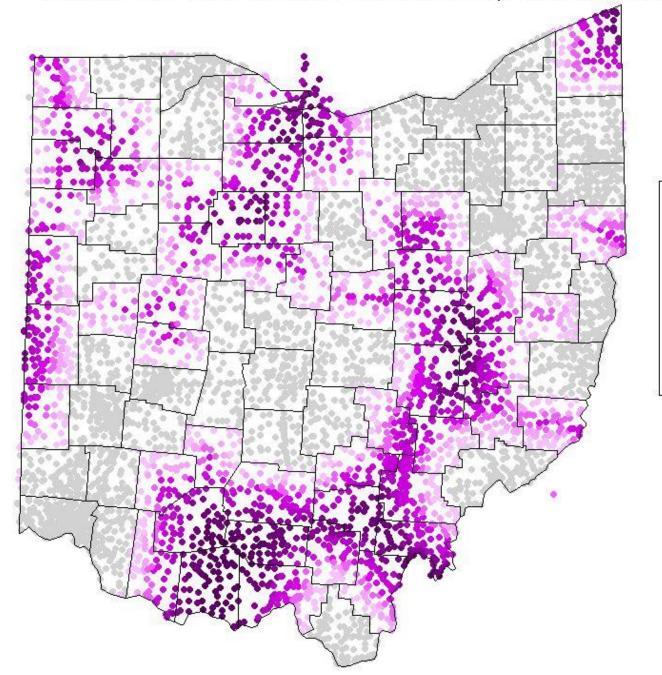
1990-96 Population Change

Patterns - What spatial patterns exists...?

- This question is more sophisticated. One might ask this question to determine whether landslides are mostly occurring near streams.
- It might be just as important to know how many anomalies there are that do not fit the pattern and where they are located.

Patterns

the question is asked to determine whether cancer is a major cause of death among residents near a nuclear power station or how many anomalies there are that don't fit a predetermined pattern and where they are located.



- Are certain health conditions concentrated in particular areas, for instance, and what else do those areas have in common?
- Where do low-income populations live, and how close are those areas to public transportation?

Distance from Ohio Towns to Nearest Metropolitan Statistical Area (MSA)

Distance from Town to Nearest MSA

- Within MSA
- Less than 5 KM
- 5KM 25 KM
- Greater than 25 KM

Modelling - What if...?

- "What if..." questions are posed to determine what happens,
- for example, if a new road is added to a network or if a toxic substance seeps into the local ground water supply.
- Answering this type of question requires both geographic and other information as well as a specific model.